Tolerance to Stress Combination in Tomato Plants: New Insights in the Protective Role of Melatonin.
نویسندگان
چکیده
Abiotic stresses such as drought, heat or salinity are major causes of yield loss worldwide. Recent studies have revealed that the acclimation of plants to a combination of different environmental stresses is unique and therefore cannot be directly deduced from studying the response of plants to each of the different stresses applied individually. The efficient detoxification of reactive oxygen species (ROS) is thought to play a key role in enhancing the tolerance of plants to abiotic stresses. Here, we report on the role of melatonin in the protection of the photosynthetic apparatus through the increase in ROS detoxification in tomato plants grown under the combination of salinity and heat, two of the most common abiotic stresses known to act jointly. Plants treated with exogenous melatonin showed a different modulation in the expression on some antioxidant-related genes and their related enzymes. More specifically, ascorbate peroxidase, glutathione reductase, glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase (APX, GR, GPX and Ph-GPX, resepctively) showed an antagonistic regulation as compared to plants that did not receive melatonin. This translated into a better antioxidant capacity and to a lesser ROS accumulation under stress combination. The performance of the photosynthesis parameters and the photosystems was also increased in plants treated with exogenous melatonin under the combination of salinity and heat. In accordance with these findings, tomato plants treated with melatonin were found to grow better under stress combination that the non-treated ones. Our study highlights the important role that exogenous melatonin plays in the acclimation of plants to a combination of two different abiotic stresses, and how this compound can specifically regulate oxidative stress-related genes and enzymes to increase plant tolerance.
منابع مشابه
Exogenous Melatonin Mitigates Acid Rain Stress to Tomato Plants through Modulation of Leaf Ultrastructure, Photosynthesis and Antioxidant Potential.
Acid rain (AR) is a serious global environmental issue causing physio-morphological changes in plants. Melatonin, as an indoleamine molecule, has been known to mediate many physiological processes in plants under different kinds of environmental stress. However, the role of melatonin in acid rain stress tolerance remains inexpressible. This study investigated the possible role of melatonin on d...
متن کاملEffect of exogenous melatonin on growth, electrolyte leakage and antioxidant enzyme activity in rosemary under salinity stress
Melatonin is a new plant hormone that plays an important role in stress tolerance. For investigation the effect of exogenous application of melatonin on salt tolerance in rosemary (Rosmarinus officinalis L.), a factorial experiment was conducted in a completely randomized design with three replications. The first factor was melatonin (50, 100 µM) and the second factor was salinity stress (6, 9,...
متن کاملEvaluation of tomato genotypes and identification of a reliable trait for tolerance to salt stress
structure. So, it is possible to achieve the salinity-tolerant genotype in plants through creating changes in the genetic structure and breeding activities. Tomato is in the group of plants sensitive to salinity stress. Distinct studies have been explained different indicators for tolerance to salt stress in tomato. Identifying a reliable indicator in the early stages of plant growth under salt...
متن کاملProtective Role of Arginine Against Oxidative Damage Induced by Osmotic Stress in Ajwain (Trachyspermum ammi) Seedlings Under Hydroponic Culture
Assessing the tolerance of medicinal plants is important for planting them in drought areas. Arginine is a growth regulator and its role in plants’ tolerance to environmental stresses such as drought has been investigated. To evaluate the protective effects of arginine against osmotic stress induced by polyethylene glycol in ajwain (Trachyspermum ammi) seedlings, an experiment was conducted as ...
متن کاملEffects of seed pretreatment with 24-brassinolide on physiological and biochemical characters in tomato plants under salt stress
In order to study the diverse effects of seed priming with 24-epibrassinolide (EBL) (0, 0.1, 1 mg/l) to increase tolerance of tomato plants (Lycopersicon esculentum Mill.) to salinity (0, 70 and 140 mM NaCl), the experiments were conducted as factorial based on completely randomized design at greenhouse condition. Results showed that salt stress significantly decreased the growth of tomato plan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 23 3 شماره
صفحات -
تاریخ انتشار 2018